|本期目录/Table of Contents|

[1]唐鉴波,赵 波,陈国樑,等.基于均值滤波的雾霾图像快速复原算法[J].电子设计工程,2020,28(01):189-193.[doi:10.14022/j.issn1674-6236.2020.01.041]
 TANG Jianbo,ZHAO Bo,CHEN Guoliang,et al.A fast restoration method for haze images based on mean filter[J].Electronic Design Engineering,2020,28(01):189-193.[doi:10.14022/j.issn1674-6236.2020.01.041]
点击复制

基于均值滤波的雾霾图像快速复原算法(PDF)
分享到:

《电子设计工程》[ISSN:1674-6236/CN:61-1477/TN]

卷:
28
期数:
2020年01期
页码:
189-193
栏目:
图像分析与多媒体
出版日期:
2020-01-05

文章信息/Info

Title:
A fast restoration method for haze images based on mean filter
文章编号:
1674-6236(2020)01-0189-05
作者:
唐鉴波1赵 波1陈国樑2佟 帅2习立坡3
(1.陆军工程大学通信士官学校 重庆 400035;2. 32369部队 北京 100043;3. 32178部队 北京 100012)
Author(s):
TANG Jian?bo1ZHAO Bo1CHEN Guo?liang2TONG Shuai2XI Li?po3
(1. Army Engineering University Communications officer School,Chongqing 400035, China;2. 32369 Troops, Beijing 100043, China;3. 32178 Troops, Beijing 100012, China)
关键词:
图像去雾 白平衡 透射率 Canny算子 边缘扩展
Keywords:
image dehazing white balance transmission Canny operator edge epanding
分类号:
TN919.8
DOI:
10.14022/j.issn1674-6236.2020.01.041
文献标志码:
A
摘要:
针对暗原色先验图像去雾算法存在的缺点,本文提出了一种利用均值滤波计算透射率的图像快速去雾算法。该算法首先对图像进行白平衡处理,达到将沙尘、偏色雾霾图像转化为白色雾天图像的目的,然后利用均值滤波计算图像暗通道,并对相关结果进行适当调整进而求得透射图,再通过Canny算子求取图像的边缘信息并划分出天空区域、计算大气光,最后根据相关参数还原无雾图像。通过实验对比验证,该算法计算复杂度低,复原结果清晰自然,具有较好的实时性。
Abstract:
Aiming at the disadvantages of the algorithm of single image haze removal using dark channel prior, this paper propose a fast image dehazing algorithm based on mean filter. First of all, the white balance is performed to ensure the picture degraded by fog or dust being pure white, then getting the minimum value of three color channel in each pixel and the transmission values by modified mean filter. Then use the canny edge detector to obtain the edges and expand the edges to eliminate the negative effect of small bright zone and get the accurate atmospheric light value. Finally, restore the foggy image with the atmosphere attenuation model.Experiments and comparisons show that this method generates good results with low computation complexity.

参考文献/References:

[1] XU Y, WEN J, FEI L, et al.Review of video and image defofgging algorithms and related studies on image restoration and enhancement[J]. IEEE Access, 2017(4):165-185. [2] 董静薇,赵春丽,海博.融合同态滤和小波变换的图像去雾算法研究[J].哈尔滨理工大学学报,2019,24(1): 66-70.[3] 姜柏军,钟明霞. 改进的直方图均衡化算法在图像增强中的应用[J]. 激光与红外,2014,44(6): 702-708.[4] 依玉峰,田宏,刘彤宇. 直方图重建图像细节增强算法[J]. 计算机工程与应用,2017,53(13):29-33.[5] 杨玲,甄志明,刘国红. 基于多尺度边缘提取的薄雾图像处理方法[J]. 哈尔滨理工大学学报,2014,19(5):94-97.[6] K. He, J. Sun, and X. Tang.Single image haze removal using dark channel prior[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington, 2009:1956-1963.[7] 邱东芳,黄光辉,刘星. 透射率和大气光自适应估计的暗通道去雾[J]. 计算机应用,2017,37(1): 176-179.[8] 董浩伟,陈洁. 一种基于大气散射模型和Retinex的红外图像去雾算法[J]. 红外技术,2019,41(4): 347-356.[9] 代少升,刘琴,王斐,等. 基于路径的Retinex算法在红外图像增强中的应用[J]. 半导体光电,2015,36(3): 482-485.[10]REN W Q,LIU S,ZHANG H,et al.Single image dehazing via multi-scale convolutional neural networks[C]// Computer Vision-ECCV 2016:154-169. [11]陈清江,张雪,柴昱洲. 基于卷积神经网络的图像去雾算法[J]. 液晶与显示,2019,34(2): 220-227.[12]武凯利,仝宗和,张鹏升,等. 基于深度学习的复杂气象条件下海上船舶识别[J]. 科学技术与工程,2019,19(3):130-135.[13]A. Levin, D. Lischinski, and Y. Weiss. A closed form solution to natural image matting[C]// IEEE Conference on Patter Analysis and Patter Machine Intelligence,Alaska,USA:IEEE Computer Society,2008,30:228-242.[14]李喆,李建增,胡永江,等. 混合先验与加权引导滤波的图像去雾算法[J]. 中国图象图形学报,2019,24(2): 170-179.[15]曹绪民,刘春晓,张金栋,等. 基于亮度对比度增强与饱和度补偿的快速图像去雾算法[J]. 计算机辅助设计与图形学学报,2018,30(10):1926-1934.[16]甘佳佳,肖春霞. 结合精确大气散射图计算的图像快速去雾[J]. 中国图象图形学报,2013,18(5):583-590.[17]Hautiere N, Tarel J, Aubert D.Blind contrast enhancement assessment by gradient ratioing at visible edges[J]. Image Analysis and Stereology Journal, 2008,27(2): 87-95.

相似文献/References:

[1]何 笑,吐尔洪江·阿布都克力木,贺 欢.一种小波变换的图像边缘检测方法[J].电子设计工程,2020,28(01):176.[doi:10.14022/j.issn1674-6236.2020.01.038]
 HE Xiao,TURGUNJAN Abdukirim,HE Huan.An image edge detection method based on wavelet transform[J].Electronic Design Engineering,2020,28(01):176.[doi:10.14022/j.issn1674-6236.2020.01.038]
[2]谢家浩,刘延飞,姚二亮.基于视觉SLAM的拾取目标定位方法研究[J].电子设计工程,2019,27(23):189.[doi:10.14022/j.issn1674-6236.2019.23.040]
 XIE Jiahao,LIU Yanfei,YAO Erliang.Research on target location method based on visual SLAM[J].Electronic Design Engineering,2019,27(01):189.[doi:10.14022/j.issn1674-6236.2019.23.040]
[3]周美丽,白宗文,肖 雪,等.两种典型彩色图像增强算法的比较与研究[J].电子设计工程,2019,27(23):181.[doi:10.14022/j.issn1674-6236.2019.23.038]
 ZHOU Meili,BAI Zongwen,XIAO Xue,et al.Research on two typical color image enhancement algorithms[J].Electronic Design Engineering,2019,27(01):181.[doi:10.14022/j.issn1674-6236.2019.23.038]
[4]赵 阳,王 剑,曹浩男.基于自适应改进的遥感图像去雾算法研究[J].电子设计工程,2019,27(19):164.
 ZHAO Yang,WANG Jian,CAO Haonan.Research on remote sensing image dehazing algorithm based on adaptive improvement[J].Electronic Design Engineering,2019,27(01):164.
[5]刘琳琳,梁雪慧.基于改进Canny算子和Hough变换的QR码图像校正[J].电子设计工程,2017,(19):183.
 LIU Lin-lin,LIANG Xue-hui.QR code image correction based on improved Canny operator and Hough transform[J].Electronic Design Engineering,2017,(01):183.
[6]卞桂平,秦益霖.基于Canny算法的自适应边缘检测方法[J].电子设计工程,2017,(10):53.
 BIAN Gui-ping,QIN Yi-lin.An adaptive edge-detection method based on Canny algorithm[J].Electronic Design Engineering,2017,(01):53.
[7]李竹林,王 静.一种基于滤波的分段点乘图像分割算法[J].电子设计工程,2016,(23):1.
 LI Zhu-lin,WANG Jing.An algorithm of piecewise point multiplication for image segmentation based on filtering[J].Electronic Design Engineering,2016,(01):1.
[8]武 园,葛玉荣.一种基于脑部肿瘤MR图像的分割方法[J].电子设计工程,2014,(10):50.
 WU Yuan,GE Yu-rong.A method based on brian tumor MR image segmentation[J].Electronic Design Engineering,2014,(01):50.
[9]王 敏,周树道,黄 峰.一种图像监测处理装置[J].电子设计工程,2014,(03):181.
 WANG Min,ZHOU Shu-dao,HUANG Feng.An image monitoring processing device[J].Electronic Design Engineering,2014,(01):181.

备注/Memo

备注/Memo:
收稿日期:2019-06-15 稿件编号:201906093作者简介:唐鉴波(1989—),男,四川南充人,硕士,讲师。研究方向:图像处理,人工智能。
更新日期/Last Update: 2019-12-31