|本期目录/Table of Contents|

[1]李乾舞,赵建新,张玉荣,等.基于速度矢量匹配的低特征破片群目标跟踪[J].电子设计工程,2020,28(01):59-64.[doi:10.14022/j.issn1674-6236.2020.01.014]
 LI Qianwu,ZHAO Jianxin,ZHANG Yurong,et al.Low feature fragment group target tracking based on velocity vector matching[J].SAMSON,2020,28(01):59-64.[doi:10.14022/j.issn1674-6236.2020.01.014]
点击复制

基于速度矢量匹配的低特征破片群目标跟踪(PDF)
分享到:

《电子设计工程》[ISSN:1674-6236/CN:61-1477/TN]

卷:
28
期数:
2020年01期
页码:
59-64
栏目:
计算机技术应用
出版日期:
2020-01-05

文章信息/Info

Title:
Low feature fragment group target tracking based on velocity vector matching
文章编号:
1674-6236(2020)01-0059-06
作者:
李乾舞1赵建新1张玉荣2杜博军3刘泽庆3李天宇4
(1. 陆军工程大学石家庄校区 火炮工程系,河北 石家庄 050003;2. 石家庄工程职业学院 航空系,河北 石家庄 050061;3. 中国人民解放军63850部队 吉林 白城 137001;4. 中国人民解放军32306部队 河南 平顶山 467000)
Author(s):
LI Qian?wu1 ZHAO Jian?xin1 ZHANG Yu?rong2 DU Bo?jun3 LIU Ze?qing3 LI Tian?yu4
(1. Artillery Engineering Department, Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050003,China;2. Department of Aviation, Shijiazhuang Engineering Vocational College, Shijiazhuang 050061, China;3. Unit 63850 of PLA , Baicheng 137001, China;4. Unit 32306 of PLA, Pingdingshan 467000, China)
关键词:
多目标图像 速度矢量 高速摄像 点匹配
Keywords:
objective image speed vector high-speed photography node matching
分类号:
TJ06
DOI:
10.14022/j.issn1674-6236.2020.01.014
文献标志码:
A
摘要:
静爆测试中破片具有体积小,速度快的特征,在高速摄像机图像序列中与背景对比度低,为了有效提取到破片目标,完成序列中的目标跟踪,提出基于速度矢量的低特征目标群的跟踪方法。方法利用前后帧时间间隔短速度矢量变换可忽略的特点,建立适合破片群运动特征的相关函数,结合新三步法完成对同名点的搜索。实验对某次静爆测试图像序列进行处理,成功提取到破片目标,并完成破片轨迹的模拟,召回率在79%,能够满足靶场测试的需要,为后期双目视觉匹配提供依据。
Abstract:
In static explosion test, fragments have the characteristics of small size and fast speed. The contrast between fragments and background is low in high-speed camera image sequence. In order to extract fragments effectively and complete target tracking in sequence, a tracking method based on low feature target group of motion vector is proposed. Methods Based on the negligible feature of short speed vector transformation between front and back frames, a correlation function suitable for fragment group motion characteristics was established, and a new three-step method was used to complete the search of homonymous points. After processing the image sequence of a static explosion test, the fragment target is successfully extracted and the fragment trajectory is simulated. The recall rate is 79%, which can meet the needs of range test and provide the basis for binocular vision matching in the later stage.

参考文献/References:

[1] 王云峰,吴炜,余小亮,等.基于自适应权重AD-Census变换的双目立体匹配[J].工程科学与技术,2018,50(4):153-160.[2] 高元浩.榴弹战斗部动爆条件下毁伤评估方法研究[D].太原:中北大学,2016.[3] 李丽萍,孔德仁,易春林,等.战斗部破片速度测量方法综述[J].测控技术,2014,33(11):5-7,13.[4] 姜三平,郝晓剑,单新云.基于激光光幕和光电二极管阵列的立靶坐标测量[J].弹道学报,2011,23(3):89-92.[5] 官安全. 复杂背景下扩展目标亚像素分级跟踪方法研究[D].成都:电子科技大学,2007.[6] Du W, Piater J. Tracking by cluster analysis of feature points and multiple particle filters[C]//International Conference on Pattern Recognition and Image Analysis, 2005: 701-710.[7] Muehlmann U, Ribo M, Lang P, et al. A new high speed CMOS camera for real-time tracking applications[C]// IEEE International Conference onRobotics and Automation, 2004. Proceedings,2004, 5: 5195-5200.[8] Duan L, Song P, Chen Z, et al. A target tracking algorithm based on mean shift and fast template matching[J]. Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2018, 36(4): 792-799.[9] Zhou M, Hong X, Tian Z S, et al. 2-D maximum entropy threshold segmentation-based SIFT for image target matching[C]// Control Engineering and Information Systems: Proceedings of the 2014 International Conference on Control Engineering and Information Systems,2015: 207.[10]Liu F, Gong C, Huang X, et al. Robust visual tracking revisited: From correlation filter to template matching[J]. IEEE Transactions on Image Processing, 2018,27(6): 2777-2790.[11]Zhang S,Lan X,Qi Y,et al. Robust visual tracking via basis matching[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(3): 421-430.[12]Fu C L. Matching System and Matching Method: U.S. Patent Application 14/873,212[P]. 2016-9-22.[13]Hu Z,Zhou L,Yang Y,et al. Anti-occlusion tracking algorithm of video target based on prediction and re-matching strategy[J]. Journal of Visual Communication and Image Representation, 2018, 57: 176-182.[14]F, Liu Q H, Sun G B. Study on measurement method for projectile location based on light screen[C]// Ninth International Symposium on Laser Metrology. International Society for Optics and Photonics, 2008, 7155: 71552K.[15]刘彦辉.视频压缩关键算法的研究[D].重庆:重庆大学,2010.[16]刘苹妮. 基于小波变换的视频图像压缩算法研究[D].西安:西安建筑科技大学,2007.[17]常向魁. 视频运动目标跟踪算法研究[D].郑州:河南大学,2007.[18]Tomasi C,Detection T K. Tracking of Point Features[R]. Tech. Rep. CMU-CS-91-132,Carnegie Mellon University, 1991.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-06-03 稿件编号:201906013作者简介:李乾舞(1995—),男,安徽安庆人,硕士研究生。研究方向:靶场测试。
更新日期/Last Update: 2019-12-30