|本期目录/Table of Contents|

[1]臧 宏,张青春,朱良凡,等.L波段平衡式放大器的研究和分析[J].电子设计工程,2020,28(01):134-139.[doi:10.14022/j.issn1674-6236.2020.01.029]
 ZANG Hong,ZHANG Qingchun,ZHU Liangfan,et al.The research and analysis of a L?band balanced amplifier[J].SAMSON,2020,28(01):134-139.[doi:10.14022/j.issn1674-6236.2020.01.029]
点击复制

L波段平衡式放大器的研究和分析(PDF)
分享到:

《电子设计工程》[ISSN:1674-6236/CN:61-1477/TN]

卷:
28
期数:
2020年01期
页码:
134-139
栏目:
嵌入式系统
出版日期:
2020-01-05

文章信息/Info

Title:
The research and analysis of a L?band balanced amplifier
文章编号:
1674-6236(2020)01-0134-06
作者:
臧 宏1张青春2朱良凡2赵桂芳1朱维玮1
(1.中国人民解放军第5720工厂 安徽 芜湖 241000 ;2.安徽华东光电技术研究所有限公司 安徽 芜湖 241000)
Author(s):
ZANG Hong1 ZHANG Qing?chun2 ZHU Liang?fan2ZHAO Gui?fang1ZHU Wei?wei1
(1.The 5720 factory of the Chinese People’s Liberation Army, Wuhu 241000, China;2.Anhui Huadong Photoelectric Technology Research Institute,Wuhu 241000, China)
关键词:
平衡式放大器 增益 稳定系数 S参数 微波测试
Keywords:
balanced amplifier gain stability factor S-parameter microwave test
分类号:
TN722.3
DOI:
10.14022/j.issn1674-6236.2020.01.029
文献标志码:
A
摘要:
研究了一种可用于无线通信领域并在频点1.03 GHz工作的平衡放大器。本文采用微波软件ADS和HFSS联合对平衡放大器的放大模块和滤波电路模块进行仿真和优化。 该放大器的中心频率为1.03 GHz,带宽为200 MHz,中心频点处噪声系数为3.2,增益大于10 dB,输入和输出反射系数均小于12 dB,增益平坦度小于0.5 dB/50 MHz,稳定系数大于1。平衡放大器具有体积小,结构简单,价格低,易于组装,高灵活性和绝对稳定性的优点,可以很好地应用于射频工程应用和微波放大要求。
Abstract:
A balanced amplifier that can be used in the field of wireless communication and works at 1.03 GHz is studied. In this paper, the microwave simulation software ADS and HFSS are used to simulate and optimize the amplification module and the post-test circuit module of the balanced amplifier. The simulation results are similar to the test results.The center frequency is 1.03 GHz, the bandwidth is 200 MHz, the gain is greater than 15 dB, and the input standing wave ratio is less than 1.8. The gain flatness is less than 0.5 dB and the stability factor is greater than 1. The balanced amplifier has the advantages of small size, simple structure, easy assembly, high flexibility and high stability, and can be well applied to small general-purpose RF and microwave amplification requirements.

参考文献/References:

[1] 吕关胜,陈文华,冯正和. 基于0.25um GaAs pHEMT工艺的C波段功率放大器设计[C]. 2018年全国微波毫米波会议论文集(下册), 2018.[2] 王行建. 超宽带功率放大器概述[J]. 电子测试, 2017(7x):102.[3] 徐余龙,施雨,李庄,等. 一种W波段SiGe BiCMOS平衡式功率放大器[J]. 微电子学, 2019(1):63-67.[4] Farmani A, Farhang M, Sheikhi M H. High performance polarization-independent Quantum Dot Semiconductor Optical Amplifier with 22 dB fiber to fiber gain using Mode Propagation Tuning without additional polarization controller[J]. Optics & Laser Technology, 2017(93):127-132.[5] Testa P V, Carta C, Klein B, et al. A 210 GHz SiGe balanced amplifier for ultrawideband and low-voltage applications[J]. IEEE Microwave & Wireless Components Letters, 2017,27(3):287-289.[6] Liu H, Jin C, Cao Y, et al. High linearity, low noise, L-band cryogenic amplifier for radio astronomical receivers[J]. Microwave & Optical Technology Letters, 2017,59(3):500-505.[7] Pednekar P H, Berry E, Barton T W. RF-input load modulated balanced amplifier with octave bandwidth[J]. IEEE Transactions on Microwave Theory & Techniques, 2017(99):1-11.[8] 杨睿. 基于ATF54143双平衡低噪声放大器的设计[J]. 电子设计工程, 2016,24(10):117-120.[9] 付鲲,朱红雷,刘伟,等 平衡式宽带低噪声放大器设计[J]. 电子科技, 2017(8):138-141.[10]汪海英, 江海金. 2进1出3 dB宽带定向耦合器的设计[J]. 电子科技, 2017,30(8):131-133.[11]王杨,郭庆功,徐军剑. 一种宽带小型化双定向耦合器设计[J]. 通信技术, 2018(3):712-717.[12]林炫龙. 一种宽频带小型化双定向耦合器的设计[J].机电工程技术, 2017(S1).[13]几种新型平衡微带耦合器的设计[D]. 西安:西安电子科技大学, 2018.[14]黄鹏,黄永茂,李良荣. 基于缺陷地结构的微带低通滤波器设计[J]. 强激光与粒子束, 2018,30(12):49-53.[15]李紫怡,杨维明,胡成康,等. 基于Hilbert分形缺陷地结构的微带低通滤波器[J]. 电子元件与材料, 2015,34(4):35-38.[16]刘巍巍,江肖力,梁栋,等. L波段LTCC高抑制宽阻带低通滤波器[J]. 无线电工程, 2017,47(8):48-51.

相似文献/References:

[1]张会先,尚海燕,周 静,等. 基于Simulink的钻井信息传输通道特性仿真[J].电子设计工程,2012,(23):187.
 ZHANG Hui-xian,SHANG Hai-yan,ZHOU Jing,et al. Acoustical properties study within drill strings based on Simulink[J].SAMSON,2012,(01):187.
[2]马中华,欧阳军,陈 彭. 汽车防撞雷达系统功率放大器仿真设计[J].电子设计工程,2012,(22):79.
 MA Zhong-hua,OUYANG Jun,CHEN Peng. Design and simulation of power amplifier in automobile collision avoidance radar system[J].SAMSON,2012,(01):79.
[3]史 聃,吕星哉,陈 明,等. 数字预失真系统反馈通道增益平坦度的补偿[J].电子设计工程,2012,(19):103.
 SHI Dan,LV Xing-zai,CHEN Ming,et al. Analysis and compensation of feedback gain flatness in digital pre-distortion system[J].SAMSON,2012,(01):103.
[4]陈路瑶,黄光明,马 丽,等. 电流型运算放大器在应用电路中的特性研究[J].电子设计工程,2012,(17):61.
 CHEN Lu-yao,HUANG Guang-ming,MA Li,et al. Research on current feedback amplifier in application circuit[J].SAMSON,2012,(01):61.
[5]宋奇伟,陆安江,张正平.一种带有增益提高技术的高速CMOS运算放大器设计[J].电子设计工程,2012,(10):1.
 SONG Qi-wei,LU An-jiang,ZHANG Zheng-ping.Design of a high speed CMOS operational amplifier with gain boosting technique[J].SAMSON,2012,(01):1.
[6]王红梅,任 缅.X波段低噪声放大器的设计[J].电子设计工程,2012,(06):166.
 WANG Hong-mei,REN Mian.Design of X-band low-noise amplifier[J].SAMSON,2012,(01):166.
[7]陈 佳,张绍洲.微带分支线定向耦合器的小型化[J].电子设计工程,2011,(24):108.
 CHEN Jia,ZHANG Shao-zhou.Miniaturization of microstrip branch-line coupler[J].SAMSON,2011,(01):108.
[8]张 毅.数字电位器在加速度存储测试调理电路中的应用[J].电子设计工程,2011,(22):137.
 ZHANG Yi.Digital potentiometer in accelerator memory measurement and condition circuit[J].SAMSON,2011,(01):137.
[9]李 新,陆 婷,刘 峻,等.一种共基差分低噪声放大器设计[J].电子设计工程,2010,(08):182.
 LI Xin,LU Ting,LIU Jun,et al.Design of common-base differential low noise amplifier[J].SAMSON,2010,(01):182.
[10]曾真,施智强,何欣,等.宽带放大器[J].电子设计工程,2008,(11):57.
 ZENG Zhen,SHI Zhi-qiang,HE Xin,et al.Wideband amplifier[J].SAMSON,2008,(01):57.

备注/Memo

备注/Memo:
收稿日期:2019-05-28 稿件编号:201905160基金项目:国家自然科学基金青年基金资助项目(61501159)作者简介:臧 宏(1982—),男,安徽芜湖人,硕士研究生,工程师。研究方向:微波电路及系统。
更新日期/Last Update: 2019-12-30