[1] Rafael C. Gonzalez, Richard E. Woods. Digital image processing [M]. Publishing House of Electronics Industry, BEIJING, 2011:443-444.[2] DENG X, Ma Y. PCNN model analysis and its automatic parameters determination in image segmentation and edge detection[J]. Chinese Journal of Electronics, 2014, 23 (1):97-103.[3] 郭业才,周林峰.基于脉冲耦合和图像熵的各向异性扩散模型研究[J].物理学报,2015, 5(19):194204-1.[4] 唐士生, 陈绚青, 基于超模糊熵ULPCNN二值图像分割算法研究与实现[J].激光杂志,2016,37 (1):113-116.[5] Mario I, Chacon M, Jessica A. Time Series Classifier For Texture Segmentation[C]// Fuzzay Information Processing Society(NAFIPS): 2011 Annual Meeting of the North American,2011:1-6.[6] Lian J, Ma Y, Ma Y, Shi B. Automatic gallbladder and gallstone regions segmentation in ultrasound image[J]. Int J Comput Assist Radiol Surg, 2017, 12(4):1-16. [7] 吴俊, 孙明明,肖志涛. 联合蚁群算法和PCNN的脑部MRI图像分割方法[J]. 光电子激光:2014,25(3):614-619.[8] TAN W, ISA N A M. Segmentation and detection of human spermatozoa using modified Pulse Coupled Neural Network optimized by Particle Swarm Optimization with Mutual Information[C]//Proceedings of the 10th Conference on Industrial Electronics and Applications, IEEE,2014:192-197.[9] Rajeswari S, Josephine M S, Jeyabalaraja V. An elm predictive model for risk assessments of CVD in impaired glucose tolerance (IGT) patients via genpcnn and slfns algorithm[J]. Journal of Theoretical & Applied Information Technology, 2018,96(3):605-615.[10]He F,Guo Y,Gao C. An improved pulse coupled neural network with spectral residual for infrared pedestrian segmentation[J]. Infrared Physics & Technology, 2017(87):22-30.[11]Guo Z, Li X, Huang H, et al. Deep learning-based image segmentation on multi-modal medical imaging[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019,12(99):1-1.[12]贺付亮,郭永彩,高潮.复杂环境下用于人体目标红外图像分割的改进PCNN方法[J].光学学报,2017,2(2):0215003.[13]周东国,高潮,郭永彩. 一种参数自适应的简化PCNN图像分割方法[J]. 自动化学报,2014,6(40):1191-1197.[14]张新伟,易克川,高连兴. 基于脉冲耦合神经网络的黏连玉米种子图像分割[J]. 中国农业大学学报,2015,20(3):208-215.[15]朱俊锋,胡翔云,张祖勋.多尺度点云噪声检测的密度分析法[J].测绘学报,2015,3(44):282-291.[16]余金栋,张宪民.用于线纹显微图像的边缘检测算法[J].光学精密工程,2015,1(23):271-281.[17]Cai H, Yang Z, Cao X, et al, A new iterative triclass thresholding technique in image segmentation[J].IEEE Transaction on Image Processing,2014,23(3):1038-1046.[18]许芹,唐敦兵,蔡祺祥.改进的快速模糊C均值聚类图像分割算法[J].南京理工大学学报,2016,40(3):309-314.[19]袁小翠,吴禄愼,陈华伟.基于OTSU方法的钢轨图像分割[J].光学精密工程, 2016,7(24):1772-1781.[20]郑欣,彭真明.基于活跃度的脉冲耦合神经网络图像分割[J].光学精密工程,2013,3(3):821-827
[1]武 园,葛玉荣.一种基于脑部肿瘤MR图像的分割方法[J].电子设计工程,2014,(10):50.
WU Yuan,GE Yu-rong.A method based on brian tumor MR image segmentation[J].SAMSON,2014,(22):50.
[2]孙东卫,赵 镭,杨振元. 基于最优阈值法的锅炉火焰图像处理的研究[J].电子设计工程,2013,(18):136.
SUN Dong-wei,ZHAO Lei,YANG Zhen-yuan. Research on boiler flame image processing based on the optimal threshold method[J].SAMSON,2013,(22):136.
[3]晁 越,李中健,黄士飞. OpenCV图像处理编程研究[J].电子设计工程,2013,(10):175.
CHAO Yue,LI Zhong-jian,HUANG Shi-fei. Programming and image processing based on the realization OpenCV[J].SAMSON,2013,(22):175.
[4]何维娜,张丽丽. 人工神经网络在金相图像分割中的应用研究[J].电子设计工程,2013,(03):143.
HE Wei-na,ZHANG Li-li. Study on artificial neuronal networks applied on microstructure segmentation from metallographic images[J].SAMSON,2013,(22):143.
[5]杨修国. 基于遗传算法的最大类间方差法的改进[J].电子设计工程,2013,(01):188.
YANG Xiu-gu. Genetic algorithm based on Otsu method improvement[J].SAMSON,2013,(22):188.
[6]杨修国. 浅谈图像阈值分割技术[J].电子设计工程,2012,(23):36.
YANG Xiu-guo. Discussion of image threshold segmentation[J].SAMSON,2012,(22):36.
[7]赵艳妮,郭华磊,李敬华. 基于粒子群模糊C均值聚类的快速图像分割[J].电子设计工程,2012,(18):167.
ZHAO Yan-ni,GUO Hua-lei,LI Jing-hua. Image segmentation based on particle swarm optimization fast fuzzy C-means clustering[J].SAMSON,2012,(22):167.
[8]杨修国. 关于直方图双峰法的研究与改进[J].电子设计工程,2012,(12 ):176.
YANG Xiu-guo. Research and improvement on the histogram bimodal method[J].SAMSON,2012,(22):176.
[9]高俊钗1,韩 冰2.模糊目标轮廓图像分割研究[J].电子设计工程,2011,(13):170.
GAO Jun-chai,HAN Bing.Image segmentation research on blurred object contour[J].SAMSON,2011,(22):170.
[10]张国权.基于遗传算法的彩色图像多阈值分割方法研究[J].电子设计工程,2011,(09):43.
ZHANG Guo-quan.Study on multi-threshold segmentation for color image based on genetic algorithm[J].SAMSON,2011,(22):43.