|本期目录/Table of Contents|

[1]卢 宁,司 辉,郑永爱.基于状态观测器的分数阶混沌系统的同步[J].电子设计工程,2019,27(22):10-14.
 LU Ning,SI Hui,ZHENG Yongai.Synchronization of fractional?order chaotic systems based on state observer[J].SAMSON,2019,27(22):10-14.
点击复制

基于状态观测器的分数阶混沌系统的同步(PDF)
分享到:

《电子设计工程》[ISSN:1674-6236/CN:61-1477/TN]

卷:
27
期数:
2019年22期
页码:
10-14
栏目:
测量与控制
出版日期:
2019-11-20

文章信息/Info

Title:
Synchronization of fractional?order chaotic systems based on state observer
文章编号:
1674-6236(2019)22-0010-05
作者:
卢 宁司 辉郑永爱
(扬州大学 信息工程学院,江苏 扬州225127)
Author(s):
LU Ning SI Hui ZHENG Yong?ai
(College of Information Engineering,Yangzhou University, Yangzhou 225127, China)
关键词:
分数阶混沌系统 混沌同步 分数阶超螺旋算法 状态观测器
Keywords:
fractional-order chaotic system chaotic synchronization fractional order super-twisting algorithm state observer
分类号:
TN93
DOI:
-
文献标志码:
A
摘要:
研究了具有外部干扰的分数阶混沌系统同步问题。针对系统中存在的外部干扰,采用分数阶超螺旋算法设计了状态观测器逼近不确定响应系统,基于观测系统和分数阶系统稳定性理论设计了控制器,实现了不确定分数阶混沌系统的同步,给出了数学证明过程。最后以分数阶R?ssler系统为例进行仿真,仿真结果表明了本文所研究方法的可行性和有效性。
Abstract:
The synchronization problem of fractional-order chaotic systems with external disturbances is studied. Aiming at the external disturbance existing in the system, the state observer approximating uncertain response system is designed by using the fractional order super-twisting algorithm. The controller is designed based on the observation system and the fractional-order system stability theory, and the synchronization of the uncertain fractional-order chaotic system is realized. The mathematical proof process is given. Finally, the fractional-order [Rossler]system is taken as an example to simulate, and the simulation results show the feasibility and effectiveness of the proposed method.

参考文献/References:

[1] 雷腾飞,付海燕,张鑫,等. 基于Adomian分解法的分数阶混沌系统的动力学分析与电路实现[J]. 电子器件, 2019,42(1):193-200.[2] 李书家. 分数阶忆阻混沌电路动力学分析及其滑模控制研究[D]. 合肥:安徽大学,2017.[3] 杨志宏,张彩霞,屈双惠,等. 异分数阶chen系统的动力学特性及其多元电路实现[J]. 江西师范大学学报:自然科学版, 2017(2):28-34.[4] 徐光宪,赵越,公忠盛. 基于混沌序列的双重加密安全网络编码方案设计[J]. 计算机应用, 2017, 37(12):3412-3416.[5] 曹军梅. 一种基于LWT和混沌加密的音频水印算法[J]. 电子设计工程, 2018,26(6):7-10.[6] 蒋逢灵,谭文. 一种提高铁路安全通信的混沌加密新方法[J]. 计算机应用与软件, 2017(12):173-177.[7] 周广彬,姚磊,陈晓军,等. 混沌加密和图像隐藏在电子病历中的应用[J]. 电脑知识与技术, 2017,13(20):176-177.[8] 贾红艳,陈增强,薛薇. 分数阶Lorenz系统的分析及电路实现[J]. 物理学报, 2013,62(14):48-54.[9] Xu, Yufeng, He, et al. Synchronization of variable-order fractional financial system via active;control method[J]. Central European Journal of Physics, 2013,11(6):824-835.[10]Xin B, Zhang J. Finite-time stabilizing a fractional-order chaotic financial system with market confidence[J]. Nonlinear Dynamics,2015,79(2):1399-1409.[11]王震,孙卫. 分数阶Chen混沌系统同步及Multisim电路仿真[J]. 计算机工程与科学, 2012,34(1):187-192. [12]雷腾飞,陈恒,付海燕. 分数阶Liu混沌系统的Adomian分解法求解及数字实现[J]. 天津科技大学学报, 2018,33(5):77-82.[13]谭文,罗健,吕明阳,等.分数阶Lü混沌系统的同步控制新方法研究[J]. 湖南科技大学学报:自然科学版, 2014(3):59-63.[14]Tabasi M , Balochian S . Synchronization of the chaotic fractional-order genesio–tesi systems using the adaptive sliding mode fractional-order controller[J]. Journal of Control, Automation and Electrical Systems, 2017,29(1):15-21.[15]Muthukumar P, Balasubramaniam P,Ratnavelu K. T-S fuzzy predictive control for fractional order dynamicalsystems and its applications[J]. Nonlinear Dynamics, 2016,86(2):751-763.[16]Zheng, Yongai. Fuzzy prediction-based feedback control of fractional order chaotic systems[J]. Optik-International Journal for Lightand Electron Optics, 2015,126(24):5645-5649[17]鲜永菊,夏诚,徐昌彪. 新混沌系统及其分数阶系统的自适应同步控制[J].控制理论与应用, 2018,35(6):159-167.[18]孙宁,张化光,王智良. 基于分数阶滑模面控制的分数阶超混沌系统的投影同步[J]. 物理学报, 2011,60(5):050511-1-050511-7.[19]Khan A, Tyagi A. Fractional order disturbance observer based adaptive sliding mode hybrid projective synchronization of fractionalorder Newton-Leipnik chaotic system[J]. International Journal of Dynamics and Control, 2018,6(3):1136-1149. [20]宫庆坤,姜长生,吴庆宪,等.基于滑模干扰观测器的歼击机超机动飞行控制[J]. 电光与控制, 2014,21(11):14-17.[21]Tran X, Kang H. A novel obser ver-based finite-time control method for modified function projective synchronization of uncertainchaotic (hyperchaotic) systems[J].Nonlinear Dyn,2015,80(1):905-916.[22]Al-Saggaf U M, Bettayeb M, Djennoune S. Super-twisting algorithm-based sliding-mode observer forsynchronization of nonlinear incommensurate fractional-order chaotic systems subject to unknown inputs[J]. Arabian Journal for Science and Engineering, 2017,42(7):3065-3075.[23]Karami-Mollaee A, Tirandaz H, Barambones O. On dynamic sliding mode control of nonlinear fractional-order systems using sliding observer[J]. Nonlinear Dynamics, 2018,92(3):1379-1393.[24]Aguila-Camacho N,Duarte-MermoudMA, Gallegos J A. Lyapunov functionsfor fractional order systems[J].Communications in Nonlinear Science and Numerical Simulation, 2014,19(9):2951-2957.[25]Zakeri E, Moezi S A, Eghtesad M.Optimal interval type-2 fuzzy fractional order super twisting algorithm: A second order sliding mode controller for fully-actuated and under-actuated nonlinear systems[J]. ISA Transactions, 2018(85):13-32.

相似文献/References:

[1]毛亚洲,俞孟蕻.大功率平台电站断电保护策略研究[J].电子设计工程,2018,26(14):144.
 MAO Yazhou,YU Menghong.Research on blackout prevention of platform power station with large power[J].SAMSON,2018,26(22):144.
[2]李 明,陈 旭,郑永爱.一类分数阶不确定混沌系统的混合投影同步[J].电子设计工程,2017,(12):11.
 LI Ming,CHEN Xu,ZHENG Yong-ai.Hybrid projective synchronization of a class of fractional-order uncertain chaotic systems[J].SAMSON,2017,(22):11.
[3]高振阳,王露露,施汀瑞.非均匀气隙永磁同步电机的有限时间自适应混沌同步[J].电子设计工程,2016,(05):97.
 GAO Zhen-yang,WANG Lu-lu,SHI Ting-rui.Finite-time adaptive chaos synchronization of permanent magnet synchronous motor with non-smooth air-gap[J].SAMSON,2016,(22):97.

备注/Memo

备注/Memo:
收稿日期:2019-03-07 稿件编号:201903047基金项目:国家自然科学基金资助项目(61473249)作者简介:卢 宁(1994—),男,山东济南人,硕士研究生。研究方向:分数阶混沌系统控制与同步。
更新日期/Last Update: 2019-11-21