|本期目录/Table of Contents|

[1]万连城.基于阻抗频率响应的EMC平衡参数化与优化方法[J].电子设计工程,2017,(08):143-146.
 WAN Lian-cheng.Research on EMC balance parameterization and optimization method based on impedance frequency response[J].SAMSON,2017,(08):143-146.
点击复制

基于阻抗频率响应的EMC平衡参数化与优化方法(PDF)
分享到:

《电子设计工程》[ISSN:1674-6236/CN:61-1477/TN]

卷:
期数:
2017年08期
页码:
143-146
栏目:
网络与通信
出版日期:
2017-04-20

文章信息/Info

Title:
Research on EMC balance parameterization and optimization method based on impedance frequency response
文章编号:
1674-6236(2017)08-0143-04
作者:
万连城
(西安电子科技大学 期刊中心,陕西 西安 710071)
Author(s):
WAN Lian-cheng
(Journal Publiction Center,Xidian University,Xi’an 710071,China)
关键词:
EMC平衡 Thiele-Small参数 参数估计 控制器设计
Keywords:
EMC balance Thiele-Small parameters estimation of parameters controller design
分类号:
TN99
DOI:
-
文献标志码:
A
摘要:
针对电磁力补偿(EMC)称重传感器设计的复杂性问题,文中提出了一种从阻抗的频率响应推导出用于描述EMC称重传感器的动态行为的参数的方法。将这些参数称为Thiele-Small参数,通过利用这些参数,建立了可以在称重传感器的主谐振频率附近描述称重传感器的动态行为的模型。基于所建立的模型,利用Thiele-Small参数对控制器进行了设计和测量。结果显示出模型计算结果与测量结果的良好的一致性。因此,通过采用文中所述方法设计控制器,证明了可以基于Thiele-Small参数来设计EMC称重传感器控制器。
Abstract:
Aiming at the complexity of electromagnetic force compensated (EMC) load cell design, this paper presents a method to derive parameters for describing the dynamic behavior of EMC load cells from the frequency response of impedance. These parameters are referred to herein as Thiele-Small parameters, and by using these parameters a model can be developed that describes the dynamic behavior of the load cell in the vicinity of the main resonant frequency of the load cell. Based on the established model, the controller was designed and measured with Thiele-Small parameter. The results show good agreement between the calculated results and the measured results. Therefore, by using the method described in this paper, it is proved that the controller of the load cell can be designed based on Thiele-Small parameter.

参考文献/References:

[1] Weis H, Hilbrunner F, Fr?觟hlich T, et al. Mecha-tronic FEM model of an electromagnetic-force-compensated load cell[J].Measurement Science & Technology,2013,23(7):74018-74027.[2] Huang Q, Teng Z, Tang X, et al. Temperature influence and compensation of the nonlinearity in electromagnetic compensated load cell[J].Chinese Journal of Scientific Instrument,2015,36(6):1415-1423.[3] Huisman R, Aalders JWG, Eggens MJ, et al. Cryogenic mechatronic design of the HIFI focal plane chopper[J]. Mechatronics, 2014,21(8):1259-1271.[4] Ferrand D, Vergez C, Fabre B, et al. High-preci-sion regulation of a pressure controlled artificial mouth: the case of recorder-like musical instru-ments[J]. Acta Acustica United with Acustica, 2013,96(4):701-712.[5] Feldmann M, Buttgenbach S. Linear variable reluc-tance(vr)micro motors with compensated attraction force: concept, simulation, fabrication and test[J]. IEEE Transactions on Magnetics, 2013,43(6):2567-2569.[6] Voishvillo A. Graphing, interpretation, and compa-rison of results of loudspeaker nonlinear distortion measurements[J]. Journal of the Audio Engineering Society, 2014,52(4):332-357.[7] Solovyeva EB, Degtyarev SA. Iterative operator method of nonlinear compensation in recursive systems[J]. Radioelectronics and Communications Systems, 2015,52(9):488-496.[8] Ureda MS. Determination of Thiele-Small parame-ters of a loudspeaker using nonlinear goal program-ming[J]. Journal of the Acoustical Society of America, 2013,80(4):498-506.[9] D’Appolito J, Lautsprecher-Messtechnik, PC-gestutzte. Analyse analoger Systeme[M].USA:Elektor-Verlag, 2015.[10]Eargle J. Loudspeaker handbook[M]. UK:Kluwer Academic Publishers, 2013.[11]Weis H, Hilbrunner F, Fr?觟hlich T, et al. Mecha-tronic FEM model of an electromagnetic-force-compensated load cell[J]. Measurement Science & Technology, 2012,23(7):74018-74027.[12]Kolganov, Lebedev A, Kulenko S, et al. Load compensation in mechatronic system with observer[J]. Electrical, Control and Communication Engine-ering, 2014,1(1):36-39.[13]Jankowski P, Woloszyn M. Suitability study of hybrid model of electrodynamic actuator[J]. Interna-tional Journal of Applied Electromagnetics & Mechanics, 2014(3):649-657.[14]Mandayam S, Udpa L, Sun YS. A fast iterative finite element model for electrodynamic and magnetostrictive vibration absorbers[J]. IEEE Transactions on Magnetics, 2014,30(5):3300-3303.[15]Andriollo M,Martinelli G,Tortella A. Optimization of an Electrodynamic Linear Actuator for Biometric Applications[J].IEEE Transactions on Magnetics, 2015,51(8):105-109.[16]王东风,孟丽.基于粒子群和辅助变量法的分数阶系统辨识[J].信息与控制,2016(3):287-293.

相似文献/References:

[1]王少帅,李登峰.基于无迹卡尔曼滤波的路面附着系数估计[J].电子设计工程,2020,28(01):27.[doi:10.14022/j.issn1674-6236.2020.01.007]
 WANG Shaoshuai,LI Dengfeng.Road adhesion coefficient estimation based on unscented Kalman filter[J].SAMSON,2020,28(08):27.[doi:10.14022/j.issn1674-6236.2020.01.007]
[2]徐知劼,李雷远.针对部分景观运动模糊的还原算法[J].电子设计工程,2019,27(24):144.[doi:10.14022/j.issn1674-6236.2019.24.032]
 XU Zhijie,LI Leiyuan.Restoration algorithm for partial landscape motion blurred[J].SAMSON,2019,27(08):144.[doi:10.14022/j.issn1674-6236.2019.24.032]
[3]吕 燕.非合作直扩信号分析的算法与实现[J].电子设计工程,2019,27(13):75.
 LV Yan.The algorithm and implementation of non?cooperative direct sequence spread spectrum signal analysis[J].SAMSON,2019,27(08):75.
[4]周利华,常 琪.一种扫频干扰信号参数估计方法[J].电子设计工程,2015,(11):176.
 ZHOU Li-hua,CHANG Qi.parameter estimation method of sweep frequency jamming signal[J].SAMSON,2015,(08):176.
[5]张守旭,严卫生,谢 兰,等. 非线性PID 控制技术在飞艇上的应用[J].电子设计工程,2014,(07):64.
 ZHANG Shou-xu,YAN Wei-sheng,XIE Lan,et al. Nonlinear PID control technology applied to the airship[J].SAMSON,2014,(08):64.
[6]游小龙,李家强,刘松林. 匹配傅里叶变换快速算法及在雷达信号处理中应用[J].电子设计工程,2013,(13):191.
 YOU Xiao-long,LI Jia-qiang,LIU Song-lin. Fast calculation method of match Fourier transform and its application in radar signal processing[J].SAMSON,2013,(08):191.
[7]王 磊,隋凯凯,李 宏.MIMO雷达多目标DOA估计[J].电子设计工程,2012,(03):44.
 WANG Lei,SUI Kai-kai,LI Hong.DOA estimation of multi-target in the MIMO radar[J].SAMSON,2012,(08):44.

备注/Memo

备注/Memo:
收稿日期:2016-12-02 稿件编号:201612012作者简介:万连城(1983—),男,陕西西安人,硕士。研究方向:电子信息工程。
更新日期/Last Update: 2017-04-25