|本期目录/Table of Contents|

[1]贾配洋,彭晓东,沈菲菲,等.基于Apriltags改进算法的无人机移动目标识别与跟踪[J].电子设计工程,2017,(17):31-35.
 JIA Pei-yang,PENG Xiao-dong,SHEN Fei-fei,et al.UAV’s moving target recognition and tracking based on improved Apriltags algorithm[J].SAMSON,2017,(17):31-35.
点击复制

基于Apriltags改进算法的无人机移动目标识别与跟踪(PDF)
分享到:

《电子设计工程》[ISSN:1674-6236/CN:61-1477/TN]

卷:
期数:
2017年17期
页码:
31-35
栏目:
计算机技术应用
出版日期:
2017-09-05

文章信息/Info

Title:
UAV’s moving target recognition and tracking based on improved Apriltags algorithm
文章编号:
1674-6236(2017)17-0031-05
作者:
贾配洋12彭晓东1沈菲菲12高 辰12周武根12
(1.中国科学院国家空间科学中心 北京 100190;2.中国科学院大学 计算机与控制学院,北京 100190)
Author(s):
JIA Pei-yang12PENG Xiao-dong1SHEN Fei-fei12GAO Chen12ZHOU Wu-gen12
(1.National Space Science Center,Chinese Academy of Science,Beijing 100190,China;2.College of Computer and Control,University of Chinese Academy of Science,Beijing 100190,China)
关键词:
机器视觉 Apriltags识别 无人机 Kalman滤波 目标识别与跟踪TN96
Keywords:
machine vision Apriltags detection UAV Kalman filter target recognition and tracking
分类号:
TN0
DOI:
-
文献标志码:
A
摘要:
移动目标识别与跟踪,在视频监控、人机交互、智能交通、军事应用等领域具有重大应用价值。本文针对当前目标识别与跟踪领域普遍存在的处理速度较慢、实时性不足等问题,提出了一种基于Apriltags识别的改进算法,对移动目标进行局部搜索,并结合Kalman滤波器实时估计目标下一时刻在图像中的位置,大幅提升了算法处理速度和跟踪性能。本算法在大疆M100四旋翼无人机平台上,搭载Manifold机载计算机完成了实验测试。实验证明,算法鲁棒性强、稳定性好,成功实现了无人机对快速移动目标的识别与稳定跟踪。
Abstract:
Moving target recognition and trackinghas a significant application value, in the field of video surveillance, human-computer interaction,intelligent transportationandmilitary applications. In order to solve with the problem of lowrecognition speedin the target recognition and tracking field, this paper presents an improved algorithm based on Apriltags recognition. It detects moving targetlocally with Kalman filter’s real-time estimation of the target’s 2D position in the image. It dramatically improves the algorithm processing speed and tracking performance. The algorithm is tested in the M100 UAV platform, which is equipped with Manifold. Experiments show that the algorithm has good robustness and good stability, and it successfully realizes the recognition and stable tracking of UAV for fast moving target.

参考文献/References:

[1] 吕泽华,梁虎,唐赫,等. 目标跟踪研究综述[J]. 计算机工程与科学, 2012,34(10):92-97.[2] 许伦辉,卜文萍,陈衍平,等. 基于帧差法和背景差法融合的车流量检测方法[J]. 计算机仿真, 2012,29(2):353-357. [3] 胡威. 一种新的Meanshift快速运动目标鲁棒跟踪方法[J]. 计算机应用与软件, 2014(1):140-143. [4] 原银忠,肖宏,郑耀锋,等. 基于Meanshift算法的实时目标跟踪系统[J]. 电子技术与软件工程, 2014(12):166-168.[5] Zhou Z, Wu D, Peng X, et al. Object Tracking Based on Camshift with Multi-feature Fusion[J]. Journal of Software, 2014, 9(1).[6] Sharvit A, Gutman D, Laufer D, et al. Optimal-flow minimum-cost correspondence assignment in particle flow tracking[J]. Computer Vision & Image Understanding, 2011,115(4):531-540.[7] Kalal Z, Mikolajczyk K, Matas J. Tracking-Learning-Detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 34(7):1409-22.[8] Olson E. AprilTag: A robust and flexible visual fiducial system[C]// IEEE International Conference on Robotics & Automation. IEEE, 2011:3400-3407.[9] Richardson A, Strom J, Olson E. AprilCal: Assisted and repeatable camera calibration[J]. 2013, 8215(2):1814-1821.[10]陶于金,李沛峰. 无人机系统发展与关键技术综述[J]. 航空制造技术, 2014(20):34-39.[11]Saifuddin Saif A F M, Satria Prabuwono A, Rasyid Mahayuddin Z, et al. A Review of Machine Vision based on Moving Objects: Object Detection from UAV Aerial Images[J]. International Journal of Advancements in Computing Technology, 2013.[12]Kalman R E. A New Approach to Linear Filtering and Prediction Problems[J]. J.basic Eng.trans.asme, 2015, 82D(1):35-45.[13]桑海峰,吴丹阳,王会. 视频监控下的人脸跟踪与识别系统[J]. 计算机工程与应用, 2014,50(12):175-179. [14]陈金令,苗东,康博,等. 基于Kalman滤波和模板匹配的目标跟踪技术研究[J]. 光学与光电技术, 2014,12(6):9-12[15]韩涛,吴衡,张虎龙,等. Kalman滤波融合优化Mean Shift的目标跟踪算法[J]. 光电工程, 2014(6):56-62. [16]王闯,卢健,黄杰.AUV同时定位与跟踪算法研究[J].西安工程大学学报,2014,28(5):556-562.[17]谷文华,蒋念平,李振兴.基于粒子滤波的TLD目标跟踪算法[J].电子科技,2015(12):45-47.

相似文献/References:

[1]吴成富,冯 喆,马松辉. 一种基于红外传感器的无人机姿态测量方法[J].电子设计工程,2012,(17):141.
 WU Cheng-fu,FENG Zhe,MA Song-hui. An attitude measurement for UAV based on infrared sensor[J].SAMSON,2012,(17):141.
[2]刘 静. 基于OpenCV机器视觉库的人脸图像预处理方法研究与实现[J].电子设计工程,2012,(16):186.
 LIU Jing. Research and implementation on the face images pretreatment method based on OpenCV machine visual library[J].SAMSON,2012,(17):186.
[3]卢 超,卢艳娥,刘少鹏. Singer模型在周跳探测中的应用[J].电子设计工程,2012,(16):84.
 LU Chao,LU Yan-e,LIU Shao-peng. Application of Singer model in cycle slip detection[J].SAMSON,2012,(17):84.
[4]付连锐,王兆仲. 嵌入式机器视觉系统优化研究[J].电子设计工程,2012,(14):179.
 FU Lian-rui,WANG Zhao-zhong. Study on embedded vision system optimization[J].SAMSON,2012,(17):179.
[5]尚 璐,李 锐,宋信玉.改进的Hough变换圆检测算法[J].电子设计工程,2011,(14):168.
 SHANG Lu,LI Rui,SONG Xinyu.Improved Hough transform circle detection algorithm[J].SAMSON,2011,(17):168.
[6]毛晓波,刘国栋,陈铁军,等.嵌入式机器视觉系统中ARM与DSP的数据通信方法[J].电子设计工程,2010,(10):100.
 MAO Xiao-bo,LIU Guo-dong,CHEN Tie-jun,et al.Data communication method between ARM and DSP in embedded machine vision system[J].SAMSON,2010,(17):100.
[7]许国宏,李铁成,李 星.基于GPS驯服技术的高稳频踪设计[J].电子设计工程,2010,(04):63.
 XU Guo-hong,LI Tie-cheng,LI Xing.Design of high stability frequency synthesizer based on GPS tame technology[J].SAMSON,2010,(17):63.
[8]刘长亮,王宏新,殷少锋,等.无人机发动机缸温自动控制机构设计[J].电子设计工程,2010,(05):60.
 LIU Chang-liang,WANG Hong-xin,YIN Shao-feng,et al.Design of cylinder temperature auto-control system of UAV engine[J].SAMSON,2010,(17):60.
[9]李国亮,王莉,熊红云,等.基于虚拟仪器的印刷质量检测研究[J].电子设计工程,2007,(12):30.
 LI Guo-liang,WANG Li,XIONG Hong-yun,et al.Study on printing quality checking based on virtual instrumentation[J].SAMSON,2007,(17):30.
[10]黄涛,丁俊进.基于机器视觉道路识别算法的研究[J].电子设计工程,2007,(04):34.
 HUANG Tao,DING Jun-jing.Research of the road recognition algorithm based on the machine vision[J].SAMSON,2007,(17):34.

备注/Memo

备注/Memo:
收稿日期:2016-07-15 稿件编号:201607113作者简介:贾配洋(1992—),男,四川达州人,硕士研究生。研究方向:计算机视觉、无人机应用。
更新日期/Last Update: 2017-09-06